Helen Zille sounding like an African
A fascinating result of evolution is the phenomenon of mimicry, the superficial resemblance of one organism to another that gives the mimicking organism some advantage or protection from predators. Many plants and animals have evolved such resemblances in order to increase their own chances of survival. A walking stick, for example, is an insect that closely resembles the twig of a plant. By virtue of this similarity, or mimicry, it often remains unnoticed by predators. The chameleon is a tree-dwelling lizard that is able to change its body colour to blend in with a variety of backgrounds.
Monarch butterfly, insect (Danaus plexippus) of the order Lepidoptera, family Danaidae; breeds on milkweeds.
Biologists have distinguished between several types of mimicry. In 1861 the English naturalist Henry Walter Bates described a form of mimicry in which the mimic takes advantage of the defences of its model. Such mimicry is called Batesian mimicry. In a well-known instance, the monarch butterfly serves as the model. The monarch is extremely distasteful to many birds; in fact, a bird that eats the monarch will often vomit shortly after its meal. Consequently many otherwise predatory birds will shun the monarch. The viceroy butterfly, which is not distasteful itself, has assumed colouring and markings very similar to the monarch, and thus many birds will avoid it as well. Another example is the harmless snake caterpillar, which can mimic the body and movement of a snake to discourage its natural predators.
Another style of mimicry was described in 1878 by the German zoologist Fritz Muller. In Mullerian mimicry two similar species derive mutual benefits from their resemblance. For example, two wasps, the sand wasp and the yellow jacket, are very similar in appearance, and both can inflict a painful sting. A predator that encounters either the sand wasp or the yellow jacket will learn to associate their colouration with pain and will thenceforth avoid preying on either species.
Anglerfish, marine fishes of the order Lophiiformes with lure-like appendages for baiting prey.
In yet another form of mimicry, called aggressive mimicry, a predator mimics a harmless organism in order to catch its unwitting prey. One aggressive mimic, the angler fish, lies motionless in the water while waving a small fishlike appendage. When a would-be predator approaches to eat the bait, it becomes a quick meal for the angler fish. Another fish, the sabre-toothed blenny, mimics the colour and behaviour of the harmless cleaner wrasse, which feeds on parasites attached to other fish. The blenny uses this resemblance to get close enough to its prey to attack it before it can recognize the deception.
The European cuckoo exhibits a type of parasitic mimicry. It lays its eggs in the nest of a bird whose eggs are similar in appearance. The host bird then raises the cuckoo's young.
Mimicry is the product of natural selection. Mimicking organisms have developed their particular similarities over time. Each step of the organism's transition has given it some slight advantage that has increased its chances for survival. For example, a change in colouration that allows a predator to camouflage itself may increase its chances of sneaking up on its prey. Thus it is able to acquire more food and increase its chances of staying healthy, surviving, and reproducing. Evolutionary biologists have used mimicry as a research tool and to help prove Charles Darwin's theory of evolution. They can trace the evolution of mimicking organisms to learn how long the model and mimic have shared a habitat and to what selective pressures the two organisms have adapted.
Assisted by Elliot Mitchell.
No comments:
Post a Comment